Introduction

The recovery and dissolution, or continuing worsening, of speech in stroke-induced apraxia of speech (sAoS) and progressive AoS (pAoS) when considering the symptoms of AoS, appear to be reversals of each other.

I will compare speech breakdown following stroke and progressive brain damage. The current evidence suggests that sAoS is distinct from pAoS. This suggests different causes that have relevance for management of pAoS. I plan to sketch...

- the recovery of AoS following aphasia from stroke
- And contrast it to what is known about the gradual dissolution of speech in progressive AoS.

- These two opposing patterns - gradual recovery vs. gradual dissolution - arise from separate forms of brain damage & are significantly different, although they share some major features.
- The neural representation of speech is not unitary, but a complex arrangement of abilities processed in distinct neural networks in separate anatomical locations. The role of accompanying impaired cognitive functions, have a significant impact on the emergence of apraxic symptoms following stroke and emerging in progressive AoS.

Apraxia of speech more rarely occurs on its own, but is most often accompanied by nonfluent aphasia. In fact, ‘nonfluency’ is defined in terms of impairments of articulatory agility and prosody (Goodglass & Kaplan, Poeck et al (in Code, etc)

In fact, Leborgne, the ‘original’ Broca’s aphasic person, had significant apraxia of speech, and relatively little aphasia according to Broca (1861). Broca called the condition aphemia.

And a number of researchers have suggested, that nonfluent Broca’s aphasia should be reformulated as a combination of aphasia and AoS (Bernt & Caramazza, 1980; Mohr et al, 1978).

Bernt & Caramazza (1980) state: ‘The symptoms that characterize Broca’s aphasia are explained as predictable behavioral manifestations of a central disruption of the syntactic parsing component of the language system, coupled with a (theoretically independent) articulatory deficit that affects only the speech output system.’

Mohr et al (1978), following a large survey of cases, concluded that Broca’s aphasia did not result from a lesion limited to Broca’s area, but resulted from:

- a large lesion involving the area of supply of the upper division of the left middle-cerebral artery which produces a global aphasia.
- The damage includes the operculum, the 3rd frontal convolution, the anterior parietal region, the insula, and both sides of the central Rolandic fissure, extending deep into the underlying white matter.
- This produces what they defined as ‘Big Broca’s aphasia’ or the operculum syndrome, with:
 - a severe and persisting apraxia of speech with either mutism or a non-lexical speech automatism (eg, t; t; ton; ton) with the later emergence of agrammatism and severe reading and writing problems if there is any recovery.
- Therefore, we shall consider recovery and progression in nonfluent aphasia as well as AoS.

- Apraxia in stroke typically occurs following a ‘horizontal’ lesion affecting large areas of neighbouring brain, whereas...
- Evidence suggests that progressive apraxia develops ‘vertically’, transmitted along neuronal pathways rather than by anatomical proximity.
- The possibility arises that progressive damage reveals a gradual unfolding of neural phylogeny that mirrors the evolution of the nervous system.
- While the gradual recovery of speech in nonfluent aphasia and AoS following anterior stroke are relatively well known...
- the longitudinal patterns of deterioration in gradually progressive AoS and nonfluent aphasia are less well known.

Recovery of AoS with Nonfluent Aphasia From Stroke and Dissoilation of Language & Speech Production in Progressive AoS & Nonfluent Aphasia
Post-stroke aphasia improves significantly on aphasia batteries like the Western Aphasia Battery (WAB)

Two Main Contrasting Types of Primary Progressive Aphasia (PPA)

- **Primary Nonfluent Aphasia (PNFA)**
 - the progressive 'equivalent' of 'Big' Broca’s aphasia with apraxia of speech (pAoS) from fronto-temporal-parietal damage?

- **Semantic Dementia (SD)**
 - the progressive 'equivalent' of Wernicke’s/Jargonaphasia from temporo-parietal damage?

Recovery from Nonfluent 'Big' Broca’s Aphasia with AoS) From Stroke

Mute/Severe Apraxia of Speech
Speech Automatisms+ Apraxia of Speech
Agrammatism + Syntactic Comprehension & Anomia
WAB Aphasia & Anomia

Executive, Attention, Inhibition, orofacial & limb apraxia, & WM deficits. Major Depression.

Time

Up to 23.1% of people diagnosed as global or big Broca’s make good recoveries on the WAB (Kertesz, 1979) as symptoms diminish.

Dissolution in Progressive Nonfluent Aphasia/Apraxia of Speech

Agrammatism + Syntactic Comprehension & Anomia
Speech Automatisms+Telegraphic Speech
Apraxia of Speech +Anomia

Executive, Attention, Inhibition, orofacial & limb apraxia & WM deficits. Major Depression.

Symptoms emerge over time & accumulate

Apparent reversals of each other?

Where does this leave us…?

- Taking a symptomatic approach the recovery of aphasia in stroke and dissolution in progression appear to be reversals of each other.

- But symptoms & syndromes and their relationship to linguistic domains take us only so far. Identical symptoms can result from different causes.

- Aphasia, like language, is not a unitary entity and symptoms are multidimensional. There are significant differences in underlying causes of aphasic and apraxic symptoms from stroke & pAoS/PNFA in the nature of nonfluency.

- Variable deficits in underlying cognitive processes essential for language processing - working memory, praxis, executive functions and mood disorders, all contribute to the observed syndrome.

- How much of the observed recovery or dissolution is a function of restoration (in stroke) or of compensation/adaptation and the impact of emotional state?

Significant Differences

Recent investigations suggest that there are significant differences between progressive and stroke aphasia with AoS at the 'sub-symptom' level. Particularly in:

- Single word vs. connected speech production

- Speech automatisms
Single Word vs. Connected Speech Production

- While single word production is relatively fluent in PNFA and pAoS, connected speech is slow, distorted with
 - syntactic errors,
 - shorter utterances,
 - lack of spontaneity
 - reduced complexity (Wilson et al, 2010; Patterson et al., 2006; Sajjadi et al., 2012; Code et al, 2013).
- This is the opposite pattern to nonfluent aphasia from stroke.
- Connected speech production in particular can have significant diagnostic and theoretical relevance.
- Connected speech has been compared in groups with
 - Semantic dementia (Wilson et al., 2010; Sajjadi, Patterson, Tomek, & Nestor, 2012a),
 - PNFA (Wilson et al., 2010; Sajjadi, Patterson, Tomek, & Nestor, 2012b),
 - stroke aphasia, Alzheimer’s disease (Knibb, Woollams, Hodges, & Patterson., 2009; Patterson et al., 2006).
 - pAoS & PNFA single case (Code et al., 2013)

Disinhibition/Impulsivity

- An impulsive tendency was noted early on by his family.
- Testing indicated some executive impairment, attentional impairment and disinhibition.
- A questionnaire developed (Nyatsanza et al. 2003) to examine behavioural changes was completed by Steve’s wife.
- This indicated that he had become more rigid & fixed in his opinions and developed routines that were difficult to discourage with a frequency of several times per week.

Speech

Motor speech examination:

- no apparent motor weakness or sensory loss, but some spastic dysarthriaphonia (strained-strangled voice)
- Problems initiating laryngeal & oral movement (coughing & producing vowels on command almost impossible)
- Dabul Apraxia Screening Battery revealed a range of praxic problems

Connected Speech in PNFA & Nonfluent Aphasia in Stroke

<table>
<thead>
<tr>
<th>Control (N5)</th>
<th>PNFA</th>
<th>Stroke NFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Means (sd)</td>
<td>Means (sd)</td>
<td>Means (sd)</td>
</tr>
<tr>
<td>Reading Passage</td>
<td>175.4 (35.0)</td>
<td>50.1 (37.4)</td>
</tr>
<tr>
<td>Time Total</td>
<td>47.0 (9.8)</td>
<td>182.3 (311.2)</td>
</tr>
<tr>
<td>Wilson et al 2010</td>
<td>22.5 (17.7)</td>
<td>342.0 (175.3)</td>
</tr>
</tbody>
</table>

Automatic Counting

<table>
<thead>
<tr>
<th>Wilson et al 2010</th>
<th>50.9 (25.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean 17 secs</td>
<td></td>
</tr>
</tbody>
</table>

Steve's Speech Production – Single Words

- Bread
- No
- Less
- Bad
- Cold

Steve's connected speech and matched controls and data on PNFA (N10) and Stroke NFA (N10) and for rates of connected speech (words per minute - wpm).

<table>
<thead>
<tr>
<th></th>
<th>Steve T1</th>
<th>Steve T2</th>
<th>Control (N5)</th>
<th>PNFA Means (sd)</th>
<th>Stroke NFA Means (sd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picture Description</td>
<td>Wpm</td>
<td>12.7</td>
<td>6.3</td>
<td>137.4 (25.4)</td>
<td>27.8 (18.7)</td>
</tr>
<tr>
<td>Total Words</td>
<td>19</td>
<td>11</td>
<td>27.8 (18.7)</td>
<td>25.2 (5.1)</td>
<td></td>
</tr>
<tr>
<td>Total Time</td>
<td>1.44 secs</td>
<td>1.44 secs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conversation
- Total Time: 4 mins 41 secs
- Steve Pause Time: 1 min 43 secs
- Longest Pause: 21 secs
- Total Words: 38
- Mean utterance length: 1.72 words
- Longest utterance: 5 words

Steve’s ‘Apraxia of Speech’
- Significant initiation problems
- Significant pausing between words in earlier continuous speech, though single words and short phrases are produced relatively quickly
- Intrusive schwa (/scrip-a-ta/ & some between-word pausing, but less within words.
- Connected speech severely impaired
- Single word production significantly better than connected speech, with increasing fatigue with progress through – a diagnostic sign?

Steve’s connected speech production with data on PNFA (N10) and Stroke NFA (N10) for rates of connected speech (words per minute - wpm).

<table>
<thead>
<tr>
<th></th>
<th>Steve T1</th>
<th>Steve T2</th>
<th>Control (N5)</th>
<th>PNFA Means (sd)</th>
<th>Stroke NFA Means (sd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picture Description</td>
<td>Wpm</td>
<td>12.7</td>
<td>6.3</td>
<td>137.4 (25.4)</td>
<td>27.8 (18.7)</td>
</tr>
<tr>
<td>Total Words</td>
<td>19</td>
<td>11</td>
<td>27.8 (18.7)</td>
<td>25.2 (5.1)</td>
<td></td>
</tr>
<tr>
<td>Total Time</td>
<td>1.44 secs</td>
<td>1.44 secs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conversation
- Total Time: 4 mins 41 secs
- Steve Pause Time: 1 min 43 secs
- Longest Pause: 21 secs
- Total Words: 38
- Mean utterance length: 1.72 words
- Longest utterance: 5 words

Steve’s Connected Speech Production

Grandfather Passage
February 2002

Steve’s ‘Apraxia of Speech’
- Significant initiation problems
- Significant pausing between words in earlier continuous speech, though single words and short phrases are produced relatively quickly
- Intrusive schwa (/scrip-a-ta/ & some between-word pausing, but less within words.
- Connected speech severely impaired
- Single word production significantly better than connected speech, with increasing fatigue with progress through – a diagnostic sign?

Connected Speech
Changes in speech rate in Steve & controls in connected reading aloud (Grandfather Passage).

Steve slows down as he progresses through the 130 word passage
Controls speed up
In this case, appeared to reflect a
Occurred when there was an

The possibility arises that progressive damage reveals a gradual unfolding of neural phylogeny that
Treatments would need to take account of progressive underlying impairments & their impact on
everyday family life.

Aphasic Speech Automatisms in Nonfluent (Big Broca’s) Aphasia from Stroke

Lexical:

Pronoun+Modal/ Aux Verb (most common):
• I want…; I can/can’t; You can’t…; I think…;
• If I can tell; If I can try…)

Others: Expletives, Proper Names, Numbers, Yes/No

Nonlexical:
• /tu tu/
• /di di/
• /tan tan/

Both nonpropositional & typically occur every time, or nearly every time, when attempting speech, with no apparent relationship to context.
In severe form may be unaware due to attention or inhibition deficit.

Speech automatisms occur in progressive nonfluent aphasia too, but they appear to be different.

Steve’s Automatisms:
• yes yes
• right yes or
• right yes.
• They occurred after production of single words & before gestures in testing, and less in connected speech, and not in place of more propositional speech.
• Occurred when there was an opportunity, little opportunity in connected speech.
• In this case, appeared to reflect a vocal overflow of inner speech due to some disinhibition as an affirmation of a correct response & associated with occurrences of apraxia of speech.
• Unaware - the underlying cause appeared to be disinhibition, and weak attention/monitoring, not aphasia.

Conclusions

Recovery and dissolution of speech and language impairment in stroke and progressive aphasia appear on a symptomatic level to be reversible in each other, but…

Examination of the underlying causes of symptoms (single word vs. connected speech production, speech automatisms) suggest different causes that have relevance for management of progressive AoS.

Hardly surprising perhaps, given that...
• Apraxia and aphasia in stroke typically occur following an ‘horizontal’ lesion affecting large areas of neighboring brain reflecting impairments to blood supply.
• Evidence suggests that progressive aphasia and apraxia reflects neuronal damage which develops ‘vertically’, transmitted along neuronal pathways that may underlie core neural networks, rather than by anatomical proximity.
• The possibility arises that progressive damage reveals a gradual unfolding of neural phylogeny that restricts the evolution of the nervous system.
• Treatments would need to take account of progressive underlying impairments & their impact on everyday family life.

Orofacial Movements to Command

<table>
<thead>
<tr>
<th>Action</th>
<th>8/2/02</th>
<th>23/8/02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stick out your tongue</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Roll your tongue</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Push cheeks out with tongue</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Try and touch nose with tongue</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Bottom lip</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Whistle</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Puff out cheeks</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Kiss</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Clear throat</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Bite lower lip</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Show me your teeth</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Take a deep breath</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Open your mouth wide</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Smile</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Pout with bottom lip</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Cough</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

TOTALS (max=80) 69 44

Utterance length & response latencies in Single Words

for Steve & age, sex, education matched controls in 35 repeated high frequency single syllable words.

<table>
<thead>
<tr>
<th>Utterance length</th>
<th>Response latencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean length (ms)</td>
<td>Range (ms)</td>
</tr>
<tr>
<td>Steve</td>
<td>.478 (.122)</td>
</tr>
<tr>
<td>Controls</td>
<td>.623 (.104)</td>
</tr>
<tr>
<td>Mean Diff.</td>
<td>.143*</td>
</tr>
</tbody>
</table>

Note that Steve produces shorter single words than controls.

Orofacial Movements to Command

Time taken for Steve to recite the 10s (1-10), the teens (11-20) and the 20s (21-30) at Time 1 and Time 2 and controls (N=5) total time in automatic counting.

Steve’s duration gradually increases as he recites 1-30
Problems and future research:

- The effects of compensation on the emergence of symptoms
- The effects of time since onset (in stroke) vs. time since diagnosis/referral/emergence (?)
- These issues are seldom considered or controlled for in studies in progressive apraxia of speech or progressive aphasia.

Implications for Management of Steve’s Multiple Progressive Conditions

Alternatives to Speech

- We trained & practiced some basic-needs gestures/pantomimes regularly
 (E.g. Thumbs up, Thumbs down, Drink, Eat, Cigarette, Toilet, Goodbye)
 with variable success. In the end he retained only the ‘thumbs up’.
- When he became effectively mute, we used writing.
- We used drawing also, but using a pencil became difficult for him

Augmentative Aids to Communication?

- We arranged an assessment at Frenchay Hospital Augmentative Aids Centre. A Lightwriter was loaned to him and was useful for a while.
- We set up a small phone training programme, to communicate with his sons, which was partly successful for a while.

Lightwriter?

- Steve’s writing and praxic problems impacted eventually on his ability to use the Lightwriter. We arranged single recorded words into files that might be used later when he was mute.
- This had limited success, because by this time his praxic problems limited his ability to access the words - it came too late.

However, for other clients this is a strategy worth considering - record speech while it is good for use when speech is not possible.
Communication Boards

- To assist people who have little or no spoken language.
- This one is an A4 laminated card, featuring 15 photographs with matching phrases related to basic personal needs. It also includes the numbers one to ten, the letters of the alphabet, and icons for Yes and No.
- It goes some way towards returning control of conversation to the individual, carers, family and friends, who can be confident that they understand the wishes of the person who has lost their language skills.

Although basic, it provided some communication ability to Steve, and was not too difficult for him to use.

The Speakability Medical Passport

- Enables an aphasic people to discuss their medical needs with their doctor on an ‘equal’ basis.
- By being in possession of their own medical communication tool, a person regains a sense of control over their ability to communicate, and in a situation where it is most needed.
- The idea came from aphasic people who were instrumental in developing the contents to ensure that it fulfills all their requirements as a patient.

A Personalised Communication Resource

- In conjunction with Steve’s son, who lived with Steve, we developed a personalised communication folder.
- Used photographs and names of family, friends, involved professionals (Dr, SLT, CC) and places regularly visited (supermarket, university, park, hospital, pub) together with written names.
- It included photographs with words of objects in daily use – TV, radio, cigarettes, food, wine, beer, clothes.
- This was a particularly useful and well used resource.

Psychosocial

- Steve was in denial and ever hopeful that things would improve. Had a fear of Creutzfeldt-Jakob’s Disease. We were able to convince him that he should have no fear of that, but the results of his last MRI scan would have been clearly devastating news for him.
- We did not show him his MRI scan.
- We did tell him he had a serious brain condition that was causing his communication difficulties that he could be helped with.
- Steve’s voluntary emotional facial expression was severely impaired.
- He rejected all suggestions that he might want counseling.
- Steve had a good social life early on – did accounts for his local bus company, Chair of his Speakability Self-Help Group, helped out in his local Post Office, drove his own car.

These activities reduced as his conditions deteriorated.

Family Liaison and Counseling

- We saw Steve’s wife and two sons regularly, and they were fully informed of all our findings.
- He became separated and estranged from his wife, who went to live in France with a new partner.
- He had not got on well with sons or wife for many years.
- His younger son eventually moved into Steve's flat to care for him and was most actively engaged in his management and used his considerable IT skills to attempt ways to use Steve’s recorded speech to aid communication.
- Steve had a good SLT and GP, but a poor neurologist.

Thank You!

c.f.s.code@exeter.ac.uk

